Printed Pages – 15	Roll No.			(2)
			(a)	-1
W -	118		(b)	1
Ph.D. Entrance Examination, 2024 MATHEMATICS			(c)	0
Maximum	Marks : 50		(d)	2
Note : Each question carrying 2 marks.		Q. 3.	The	function f defined on R ⁺ as $f(x) = sin\frac{1}{x}$,
Q. 1. Find the supremum of the set :			₩×	< > 0 is :
$S = \begin{cases} 1 + \frac{(-1)^n}{n} \end{cases}$	$: n \in N$		(a)	Continuous and uniformly continuous on R ⁺

- Continuous and uniformly continuous on R⁺ (a)
- Uniformly continuous but not continuous on (b)

R⁺

Continuous but not uniformly continuous on (C)

R+

Neither continuous nor uniformly continuous (d)

on R⁺

W-118

(a) 0

(b) $\frac{1}{2}$

(c) $\frac{3}{2}$

(d) –1

Q. 2. If $\langle s_n \rangle$ is the sequence defined by

 $s_n = (-1)^n \left(1 + \frac{1}{n}\right)$, then lim inf S_n is :

P.T.O.

Q. 4. A function f is defined on [0, 1] by $f(x) = \begin{cases} \frac{1}{n} & \text{for} & \frac{1}{n+1} < x \le \frac{1}{n}, n = 1, 2, 3, \dots \\ 0 & \text{for} & x = 0 \end{cases}$ then the value of $(R)\int_{0}^{1}f(x)dx$ is : (a) 0 (b) $\frac{\pi}{2}$ (c) $\frac{\pi^2}{6}$ (d) $\frac{\pi^2}{6} - 1$ **Q. 5.** The integral $\int_0^\infty x^{n-1} e^{-x} dx$ is convergent for : equations : (a) n < 0 (b) n > 0 (c) n > 1 (d) n ≥ 1

(4)

Q. 6. If V is the vector space of dimension 2 over

 $Z_{2}=\left\{ \overline{0},\,\overline{1}\right\} ,$ then the number of basis is :

(a) 1 (b) 2 (c) 3 (d) 4

Q. 7. For what value of λ and μ the system of

x + 2y + 3z = 10

 $x + 2y + \lambda z = \mu$

x + y + z = 6

have no solution ?

(5) (6)
(a)
$$\lambda \neq 3$$
 and $\mu = 10$
(b) $\lambda = 3$ and $\mu = 10$
(c) $\lambda = 3$ and $\mu \neq 10$
(d) $\lambda \neq 3$ and $\mu = 1$
(e) $\lambda \neq 3$ and $\mu = 1$
(f) $\left[\frac{1}{-1}\right]$ is an eigen vector of $\left[\frac{1}{-3} \frac{-n}{2n}\right]$, then the value of n is :
(a) -2
(b) 2
(c) 1
(d) -1
(e) 2
(c) 1
(f) $\frac{1}{e}$
(f) $\frac{1}{e}$
(g) $\frac{1}{e}$
(h) $\frac{1}{e}$

W-118

P.T.O.

(a)
$$0$$
 (a) $w = 1 + iz$

(b)
$$e^2$$
 (b) $w = iz$

P.T.O.

Q. 12. Find the residue of
$$\frac{z^2 - 2z}{(z+1)^2(z^2+4)}$$
 at $z = -1$:
(a) $\frac{7+i}{25}$
(b) $\frac{7-i}{25}$
(c) $\frac{14}{25}$
(d) $-\frac{14}{25}$

Q. 13. Find the bilinear transformation which maps the

points z = 1, 0, -1 of z-plane into w = i, 0, -i of

w-plane :

W-118

(a) w = 1 + iz
(b) w = iz
(c) w =
$$\frac{z+i}{-3z+i}$$

(d) w = i $\left(\frac{2+z}{2-3z}\right)$

W-118

- **Q. 14.** Find total number of subgroups of $(z_{12}, +)$
- (a) 3
 (b) 4
 (c) 12
 (d) 6
 Q. 15. If G is a cylic group of order 8, then the number of isomorphisms from G to G is :

(8)

		(9)			(10)
	(a)	2		(c)	4
	(b)	4		(d)	6
Q. 16.	(c)	8	Q. 18.	Whi	ch of the following is not true ?
	(d)	16		(a)	Every Euclidian ring is a principal ideal ring
	The	number of non-abelian groups of order 6 is :		(b)	In a commutative ring without unity, a
	(a)	1			maximal ideal will always be prime
	(b)	2		(c)	A field has no proper ideals
	(C)	3			
	(d)	6		(d)	In a unique factorization domain D, an
Q. 17.	The	degree of $\sqrt{2} + \sqrt{5}$ over Q is :			element is prime if it is irreducible
	(a)	1	Q. 19.	lf th	e solution of the partial differential equation
	(b)	3		$\frac{\partial z}{\partial x}$ +	$+\frac{\partial z}{\partial y} = x + y + z$ is :
W-11	B	P.T.O.	W-11	8	

(11)				(12)			
	φ[x	$-y,e^{-\alpha x}(\beta+x+y+z)]=0$, then the	value of	Q. 21.	If the	solution of partial differential equation	
	α ar	nd β are :				(D - 1) (D - D' + 1)z = 1 + xy	
	(a)	α = 1, β = 0			is		
	(b)	α = 1, β = 1			z=e	$x \phi_1(y) + e^{-\alpha x} \phi(y+x) - x^{\beta}y - x$, then the	
	(c)	α = 0, β = 2			poss	ible values of $\alpha,\ \beta$ are :	
	(d)	α = 1, β = 2			(a)	$\alpha = 1, \beta = 1$	
Q. 20.	The	partial differential equation			(b)	$\alpha = -1, \beta = 1$	
	$\frac{\partial^2 u}{\partial x^2}$	$+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}+2\frac{\partial^2 u}{\partial y \partial z}=0$ is :			(C)	$\alpha = 1, \beta = -1$	
	(a)	Hyperbolic			(d)	α = 0, β = 1	
	(b)	Elliptic		Q. 22.	Whic	h of the following is not true ?	
	(c)	Parabolic			(a)	The product of two separable topological	
	(d)	Circular				spaces is separable	
W -11	8		Р.Т.О.	W -118	B		

(13)

(b) A subset of real line containing at least two

points is connected if and only if it is an

interval

- (c) Connectedness is a hereditary property
- (d) Every compact subset of a compact

topological space is not necessarily closed

- Q. 23. Consider the following statements :
 - (i) Every subspace of a first countable space

is first countable

(ii) Every second countable topological space

is separable

Which of the following options is/are correct ?

W-118 P.T.O.

(14)

- (a) Only (i) is true
- (b) Only (ii) is true
- (c) Neither (i) nor (ii) is true
- (d) Both (i) and (ii) are true
- Q. 24. Which of the following is true ?
 - (a) Every Hilbert space is reflexive
 - (b) An orthonormal set in a Hilbert space is

linearly dependent

(c) If {e_i} is an orthonormal set in a Hilbert

space H, then for every vector x in H

 $\sum \left| \left(\boldsymbol{x}, \boldsymbol{e}_i \right) \right|^2 \geq \left\| \boldsymbol{x} \right\|^2$

(d) Every complete subspace of a normed

linear space is not necessarily closed

(15)

Q. 25. If M is a closed linear subspace of a Hilbert space

- H, then $H = M \oplus M^{\perp}$. This theorem is called :
- (a) Parseval identity
- (b) Riesz lemma
- (c) Riesz representation theorem
- (d) Projection theorem